

## **Future Space Concepts**

Dr. David Whelan

**Director** 

**Tactical Technology Office** 

**Defense Advanced Research Projects Agency** 

dwhelan@darpa.mil

(703) 696-2307



## **Aerospace Legacy and Vision**





## **Orbital Express**



## **Extend Moore's Law to Space**





# Orbital Express Today's DoD Space Architecture Limits



### Operational

- System availability concerns force risk intolerance
- Predictable orbits allow scheduling by adversaries
- Orbital infrastructure does not account for vulnerability
- Limited ability to tactically optimize orbital configuration
- Finite fuel restricts utility

#### Costs

- Complex, highly redundant, cross-strapped designs
- Manned servicing is cost prohibitive —\$2M+/orbital-hr
- High fuel fraction costs for "maneuverable" satellites

## **■** Technology

- On-orbit technology at least 10-15 years old
- Unmanned satellite servicing requires development



## 2010 Space Architecture



- The Long View-





## The Military/Intelligence Advantage



### **■** Enable new and enhanced capabilities

- Adjustable satellite coverage / optimization
  - Optimize "thin" constellations to provide regional focus (greater coverage)
  - Operate at different altitudes as needed
  - Formation "flying"
- Random  $\Delta V$ : Counter adversary activity scheduling (D+D)
- Enable attack-mitigation options
  - Evasive and unpredictable maneuvers
- Leverage long-lived hardware reduce cost, increase capability
  - Extend lifetimes

## **■** Enable a revolution in space affairs

 Extensible Design & Commodities⇒COMMERCIAL Advantage for US Industry



## Planned System Upgrade Standard Procedure for Aircraft



## ■ F-16 Multinational Staged Improvement Program (MSIP)

- Plan progressive upgrades
  - airframe life is long technology evolving slowly
  - avionics technology progressing quickly short obsolescence cycle
- Retrofit upgrades to earlier F-16s
  - early airframes configured to accept future upgrades
- Upgrade
  - processing speed, bandwidth and memory
  - defense capability, displays, weapons and warning systems
  - communications and navigation (GPS)

### Advantages

- Increase service life and capability
- Reduce cost and time to retrofit



#### F-16 MSIP Planned Upgrades





## P<sup>3</sup>I Satellite Architectures Extend Moore's Law To Space



- Accommodate differing rates of technology advance
  - Small ORU greatly improves system performance over time
  - "Plug-and-Play" architectures can be made highly adaptable
  - Exploit long-lived components (bus, sensors, solar panels)
- **Enable New Capabilities** 
  - "Tightly coupled" systems— cross cueing/ tasking of new systems
  - Adapt to counter-measure threats
- **■** Less initial risk reduction required on upgradable avionics
- **Reduction in satellite systems' costs**









# In-Flight Refueling - A Revolution in Military Aircraft Capabilities





### Revolutionize aircraft missions

- extend range and duration
  - global missions feasible
  - fighter escorts sustainable

# Reduce cost and time compared to base refueling





Year



## **On-Orbital Refueling**



### A revolution in military spacecraft capabilities?

- Optimize "thin" constellations to provide regional focus
- Operate at different altitudes as needed
- Extend lifetimes don't end mission due to lack of fuel or cryogen
- Evasive and unpredictable maneuvers
- Auxiliary peak power generation
- **■** Formation "flying"





Dicoverer II Walker (24/8/4)





Walker 24/8/6



Walker 7/7





## **New Operational Scenarios**





## **Current State of the Art Operational Scenario:**

- fuel efficient
- autonomous between waypoints
- man-in-loop at every waypoint
- time-consuming
- conservative from safety point of view



#### **Orbital Express Operational Scenario:**

- faster
- fuel intensive
- dependent upon autonomy
- minimal interaction with ground

The faster, autonomous rendezvous procedure leverages the availability of fuel on orbit.



## **Resonant Altitudes Change** the Character of EO/IR Orbits



Areas under the repeating ground tracks receive greatly increased coverage, while remaining areas receive diminished coverage.











# High Image Quality Opportunites via Resonant Orbits



• Ability to adjust orbital altitude can dramatically increase the opportunities for the highest quality EO/IR imagery of particular area
• Maneuver

required to change

area of interest





## **Phasing for Clearer Weather**





Rephase to accommodate the forecast: "In 3 days it will be cloudy in the AM, clear in PM."

<u>Impulsive Burns</u> <u>Continuous Low Thrust</u>

Isp = 350 sec Isp = 1,500 sec

 $2 \times 8$  m/sec burns 0.5 N thrust

 $2 \times 16$  m/sec burns

Perform one maneuver per month. Fuel to be supplied to 10,000-kg S/C:

570 kg per year 260 kg per year



## Refuelable & Upgradable Satellite Design/Architecture



#### Adaptable & Mission Capable

- Preplanned Product Improvement (P<sup>3</sup>I) Satellite Design
  - Extensible avionics (upgrade by "plug & stay")
  - Refuel (propulsion, cryogenics & other)

#### **Spacecraft Features**

- Common interfaces
  - Thermal

Signal

Power

- Inertial
- "Plug and stay" ORUs for Avionics P3I
- Electronics Power systems
  - Stabilization RF elements
- Replenishment
  - Fuel, Batteries, Cryogens







# ASTRO (µ-Shuttle) Autonomous Space Transporter and Robotic Orbiter



#### Micro shuttle functions

- Avionics/Fuel Canister capture, transport
- Autonomous satellite rendezvous & docking
- Inspection
- Orbital Replacement Unit delivery
- Fuel-conserving, constant-inclination "phasing" maneuvers
- Aero-assisted plane changes

#### **Technical challenges & opportunities**

- Autonomous rendezvous / precision docking
- Soft capture mechanism
- Electrical / photonic / thermal interfaces
- Attitude control







## **Alternative Fuels**







#### **■** Fuel attributes

- High Isp
- Long-term on-orbit storage
- Relatively non-hazardous at launch
- Multi-mode
- Multiple resupply options

### What is the right fuel infrastructure?



## Delivering Low Cost Material To Space TTO



## **Launch Option**

**Dedicated** 

**Piggy Back/Adapter Rings** 

**High Tempo - High Risk/Low Cost** 

**Gun Launch from Earth** 





## **Average Cost**

\$ 5,000 - 10,000 / lb.

\$ 1,000 - 2,000 / lb

\$ ?

**\$**?





## Key Technologies for Satellite Servicing TTO



- A supervised autonomy capability
  - real-time mission planning on-board the service vehicle
- An advanced GN&C algorithmic framework for the utility service vehicle
  - improved on-board guidance (for non-impulsive burn planning)
  - improved on-board navigation (sensors and filters)
  - precision control algorithms for maneuvering for close-in proximity maneuvering
- A replaceable avionics architecture for the serviceable satellite
  - "Plug and Stay" avionics that conform to a common standard
- **■** Miniature avionics for serviceable vehicle



# Orbital Express Why Now?



#### **■** Enabling technologies have emerged

- High bandwidth communications for real-time telepresence
- Improved sensors (cameras, radars, DGPS)
- Efficient propulsion ion engines, solar cells, water rocket
- Modular spacecraft design with photonic, heat, mechanical, electrical interfaces

#### Military needs

- Strategic & Tactical maneuverability enhanced coverage, counter-denial & deception, survivability
- Large satellites have cost benefits from life extension
- Other classified military needs

#### Response to change

- Rapid evolution of technologies
- Continually evolving military/ intelligence priorities
- Commercialization of space
- Space commodities

#### ■ Technological Surprise → Potential loss of U.S. leadership

- NASA's funds increasingly committed to manned space station
- ESA & Japan see unmanned systems as an "end-around"



## **New Space Force Ideas**



- **■** Continuous Surveillance, Tracking and Targeting from space
- **■** Tactically agile satellites
- Fuel and avionics as space commodities
- Evolvable spacecraft and system capabilities









Non-Volatile Radiation Hard Memory



Discoverer II

Thin Film Photovoltaics

**Flywheels** 



## What you will hear today:



#### **■ AFSPACECOM** future direction

## Existence proofs

- Utility analysis
- On-orbit docking
- Autonomy
- Satellite standards/fluid transfer

## **■** Feedback from industry

— We want to hear your ideas